
Android SDK 5.x.x to 6.0.0
Migration Guide
This guide is intended for app developers who have been using the Java-based Alchemer Mobile
(Formerly Apptentive) Android SDK and are migrating to the new Kotlin-based Android SDK.

This guide is not intended for beta releases

Major Differences
The new Android SDK is a ground-up rewrite of the Java Alchemer Mobile Android SDK to Kotlin
using modern programming practices.

A few quick notes for getting started on the migration:

We now have a Kotlin codebase instead of Java
The screen’s Activity is now registered separately to the SDK.

This allows the engage function to be called without needing to provide an Activity
context .

Callback types are different when you engage events and when you register the SDK
Modular-based SDK
Minimum supported Android version is now Android 5.0 (API level 21)
Minimum supported compileSDK version is now 31 as per google’s requirement
Message Center is in full release version of 6.0.0+

New Features
Interaction Response Targeting

Improvements
Interface customization
ADA compliant interactions
Dark mode support
We are now using Material Design’s Material Components within our SDK (designed to be
used with Material Design 2, but Material 3 will also work)

If you haven’t already, you will need to update your app to use Material Components
and AndroidX

This should be a simple process and is highly recommended.
There are Bridge themes available if you cannot inherit from the
MaterialComponents theme

Current limitations

https://github.com/apptentive/apptentive-android
https://github.com/apptentive/apptentive-kit-android
https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
https://material.io/
https://material.io/components?platform=android
https://material.io/design
https://material.io/develop/android/docs/getting-started
https://developer.android.com/jetpack/androidx/migrate
https://material.io/develop/android/docs/getting-started#bridge-themes

Most styles in 5.8.4 and prior have been deprecated and replaced with new styles in 6.0.0.

Some styles have been moved over, such as many text size, text color, and typeface styles,
but the vast majority of styles have been changed.

The new styles have much better flexibility, many more options, better organization, and
better naming patterns.

If you are starting fresh, the possibilities are huge. Check out the UI Cookbook for examples.

Refer to the Interface Customization article for more help.

We do not recommend you migrate yet if you need any of the four features listed below.

These features will be implemented in the near future.
Encryption is not yet supported

Data migration will currently fail if you have used Encryption
Client Authentication (Multi-User / Login / Logout) is not yet supported
Plugin wrappers
Push notifications for Message Center

Java Apps

Due to Kotlin to Java interoperability limitations, our internal APIs are exposed when
integrating from Java apps. We do not recommend you directly use our internal and
@InternalUseOnly annotated fields as they are subject to change without notice.

Video Overview of How to Migrate to 6.0.0

Dependency Implementation
In your build.gradle file, add the following dependency to integrate Alchemer Mobile SDK,
replacing APPTENTIVE_VERSION with the most recent one from here:

dependencies {
 implementation "com.apptentive:apptentive-kit-android:APPTENTIVE_VERSION"
}

Your browser does not support HTML5 video.

http://help.alchemer.com/help/android-ui-cookbook-overview
http://help.alchemer.com/help/android-interface-customization
https://github.com/apptentive/apptentive-kit-android/releases

Registering the SDK
Shortly after the app launch, you’ll want your app to call the register method. This should usually
happen within your Application class. You’ll create an ApptentiveConfiguration object to pass in the
Alchemer Mobile App Key and Alchemer Mobile (Formerly Apptentive) App Signature values from
the API & Development section of the Settings tab in your Alchemer Mobile dashboard. For more
information on the optional ApptentiveConfiguration parameters, see the Configuration optional
parameters section.

Kotlin example:

class MyApplication : Application() {
 override fun onCreate() {
 super.onCreate()
 val configuration = ApptentiveConfiguration(
 apptentiveKey = "<YOUR_APPTENTIVE_KEY>",
 apptentiveSignature = "<YOUR_APPTENTIVE_SIGNATURE>"
).apply {
 /**
 * Optional parameters:
 * shouldInheritAppTheme - Default is true
 * logLevel - Default is LogLevel.Info
 * shouldSanitizeLogMessages - Default is true
 * ratingInteractionThrottleLength - Default is TimeUnit.DAYS.toMillis(7)
 * customAppStoreURL - Default is null (Rating Interaction attempts to show Google In-App Review)
 */
 }
 Apptentive.register(this, configuration)
 }
}

Java example:

public class MyApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 /*
 * Optional parameters:
 * shouldInheritAppTheme - Default is true
 * logLevel - Default is LogLevel.Info
 * shouldSanitizeLogMessages - Default is true
 * ratingInteractionThrottleLength - Default is TimeUnit.DAYS.toMillis(7)
 * customAppStoreURL - Default is null (Rating Interaction attempts to show Google In-App Review)
 */
 ApptentiveConfiguration configuration = new ApptentiveConfiguration(
 "<YOUR_APPTENTIVE_KEY>",
 "<YOUR_APPTENTIVE_SIGNATURE>"
);

 Apptentive.register(this, configuration);
 }
}

If you didn’t already have an Application class defined in your app, you will need to create
one and add it to your Manifest.

Using Registration Callbacks
Our registration callbacks help you debug the Alchemer Mobile SDK.

Kotlin example:

Apptentive.register(this, configuration) {
 when (it) {
 is RegisterResult.Success -> Log.i(
 "Apptentive Registration",
 "Registration successful"
)
 is RegisterResult.Failure -> Log.w(
 "Apptentive Registration",
 "Registration failed with response code: ${it.responseCode} and error message: ${it.message}"
)
 is RegisterResult.Exception -> Log.e(
 "Apptentive Registration",
 "Registration failed with exception",
 it.error
)
 }
}

Java example:

Apptentive.register(this, configuration, result -> {
 if (result instanceof RegisterResult.Success) {
 Log.i("Apptentive Registration", "Registration successful");
 } else if (result instanceof RegisterResult.Failure) {
 RegisterResult.Failure resultFailure = (RegisterResult.Failure) result;
 Log.w(
 "Apptentive Registration",
 "Registration failed with response code: " + resultFailure.getResponseCode() +
 ", and error message: " + resultFailure.getMessage()
);
 } else if (result instanceof RegisterResult.Exception) {
 RegisterResult.Exception resultError = (RegisterResult.Exception) result;
 Log.e("Apptentive Registration", "Registration failed with an exception", resultError.getError());
 }
});

Registering/Unregistering the Activity Callback
to the SDK
With the re-write of the SDK, we leveraged a modern architecture using modules. This allows for
greater flexibility in where the engage method can be called from.

The Alchemer Mobile SDK now needs to register the Activity to the SDK in order to show our
Interactions in your application.

This will need to be done for every Activity within your application.

We recommend that you implement this within a BaseActivity that your other Activities can
extend from or use Android Jetpack Navigation. This will enable you to implement this a
minimum number of times.

This is a 4 step process:

1. Extend the ApptentiveActivityInfo interface to your Activity

2. Override the getApptentiveActivityInfo function
a. You will just return this (the Activity)

3. Register the callback with the Alchemer Mobile SDK using the
registerApptentiveActivityInfoCallback function within your onResume function (after the super)

4. Unregister the callback using unregisterApptentiveActivityInfoCallback function within your
onPause function(before the super)

Kotlin example:

class MainActivity : AppCompatActivity(), ApptentiveActivityInfo {
 override fun onResume() {
 super.onResume()
 Apptentive.registerApptentiveActivityInfoCallback(this)
 }

 override fun getApptentiveActivityInfo(): Activity {
 return this
 }

 override fun onPause() {
 Apptentive.unregisterApptentiveActivityInfoCallback()
 super.onPause()
 }
}

Java example:

public class MainActivity extends AppCompatActivity implements ApptentiveActivityInfo {
 @Override
 protected void onResume() {
 super.onResume();
 Apptentive.registerApptentiveActivityInfoCallback(this);
 }

 @NonNull
 @Override
 public Activity getApptentiveActivityInfo() {
 return this;
 }

 @Override
 protected void onPause() {
 Apptentive.unregisterApptentiveActivityInfoCallback();
 super.onPause();
 }
}

Engaging Events
At various points in your app’s lifecycle, you will want to engage events with the Alchemer Mobile

SDK in order to allow the targeting and the launch of Alchemer Mobile interactions (Surveys,
Prompts, Love Dialog, etc.).

Events can be added almost* anywhere in the App. A few good places would be when an
Activity comes to focus, on a button tap or when the App encounters an error.

Avoid calling engage events in your Application class or before the SDK has a chance to get
fully registered.

Kotlin example:

// Engaging
Apptentive.engage("my_event")

// Engaging with callback (optional)
Apptentive.engage("my_event") { result ->
 when (result) {
 is EngagementResult.InteractionShown -> { /* Interaction was shown */ }
 is EngagementResult.InteractionNotShown -> { /* Interaction was NOT shown */ }
 is EngagementResult.Error -> { /* There was an error during evaluation */ }
 is EngagementResult.Exception -> { /* Something went wrong */ }
 }
}

Java example:

// Engaging
Apptentive.engage("my_event");

// Engaging with callback (optional) & customData (optional)
Apptentive.engage("my_event", customData, result -> {
 if (result instanceof EngagementResult.InteractionShown) {
 /* Interaction was shown */
 } else if (result instanceof EngagementResult.InteractionNotShown) {
 /* Interaction was NOT shown */
 } else if (result instanceof EngagementResult.Error) {
 /* There was an error during evaluation */
 } else if (result instanceof EngagementResult.Exception) {
 /* Something went wrong */
 }
});

Alchemer Mobile Configuration optional
parameters
The configuration options are enabled with defaults that are production-ready.

1. shouldInheritAppTheme
a. A boolean that determines if Alchemer Mobile Interactions will use the host app’s theme or

Alchemer Mobile's theme.

b. If true , Alchemer Mobile Interactions will use the host app’s theme and colors.

c. If false , Alchemer Mobile Interactions will use the Theme.Apptentive theme and colors, set

in the styles.xml file within the apptentive-core-ui package.

d. ApptentiveThemeOverride will always take priority over all themes.

e. See ThemeHelper.kt within the apptentive-core-ui package for more info.

2. logLevel
a. An enum used to define what level of logs we will show in Android Studio’s Logcat

b. Default is LogLevel.Info

c. Log level options are
i. LogLevel.Verbose

i. Any relevant info not shown in other log levels

ii. LogLevel.Debug
i. Processes with more technical information

iii. LogLevel.Info
i. General processes and non-technical results

iv. LogLevel.Warning
i. Non-breaking / handled issues

v. LogLevel.Error
i. Breaking / unhandled issues (Throwables)

3. shouldSanitizeLogMessages
a. A boolean that declares whether or not to convert the data of variables using the

@SensitiveDataKey annotation to <REDACTED>

b. When true (default)
i. Redacts sensitive information from Logcat

ii. Redacted information includes:
i. Alchemer Mobile (Apptentive) Key & Signature

ii. Conversation Token

iii. Server call
i. Headers

ii. Request Body

iii. Response Body

iv. mParticle IDs

https://github.com/apptentive/apptentive-kit-android/blob/for_public/apptentive-core-ui/src/main/res/values/styles.xml
https://github.com/apptentive/apptentive-kit-android/blob/for_public/apptentive-core-ui/src/main/java/apptentive/com/android/ui/ThemeHelper.kt
https://developer.android.com/studio/debug/am-logcat

v. Custom Data

vi. Legacy data while being converted

vii. SDK Author name and email

c. When set to false
i. All info above is available to be logged to Android Studio’s Logcat

i. Whether or not it is logged depends on the set logLevel

4. ratingInteractionThrottleLength
a. A millisecond based rating interaction throttle

b. Default is 7 days
i. We are using TimeUnit of the java.util.concurrent library to help with Day to Millisecond

conversions.
i. TimeUnit.DAYS.toMillis(7)

c. Hard limits the frequency that the user will see the Rating Interaction in a specified period of
time

d. This is an internal throttle safeguard outside of the defined limitations set in the dashboard

5. customAppStoreURL
a. A String based variable that is used for alternate app store ratings.

b. If null (default), the user will see the Google In-App Review and will be able to leave an
app rating directly to the Play Store without leaving the app.

c. If set to a String , the SDK will ignore the Google In-App Review Interaction for the
Alchemer Mobile Rating Dialog Interaction and will attempt to send the user to the specified
URL if the user chooses to rate the app.

Message Center
Message Center is largely the same functionality as before, with the current limitation of no push
notifications (coming soon in a follow-up release)

https://developer.android.com/studio/debug/am-logcat

// Opening Message Center
Apptentive.showMessageCenter()

// Engaging with callback (optional)
Apptentive.showMessageCenter() { result ->
 when (result) {
 is EngagementResult.InteractionShown -> { /* Interaction was shown */ }
 is EngagementResult.InteractionNotShown -> { /* Interaction was NOT shown */ }
 is EngagementResult.Error -> { /* There was an error during evaluation */ }
 is EngagementResult.Exception -> { /* Something went wrong */ }
 }
}

Styling
Migrating styling will be familiar, yet different. We have opened up more options for styling and
kept most of the styling parameters while removing others in order to better support a wider
range of styles.

Here’s an article on our interface customization currently available and how the default interaction
UIs look.

Prerequisites
If you haven’t already, you will need to update your app to use Material Components and
AndroidX

This should be a simple process and is highly recommended.
There are Bridge themes available if you cannot inherit from the MaterialComponents
theme.

What’s new?
We are now using Material Design’s Material Components within our SDK (designed to be
used with Material Design 2, but Material 3 will also work)
shouldInheritAppTheme will let you decide if you want to use Alchemer Mobile's colors or if we

should inherit your app’s colors
Default is true , which will inherit your app’s colors

Every layout, text, button, widget, and most other views on the screen now have their own
customization attribute associated with it
We have removed all hard-coded stylings from the views themselves in order to give greater
freedom when overriding our styles
We now have an alpha attribute that allows us to give text better visual priorities without
needing separate similar text colors

These attributes are apptentiveHeaderAlpha and apptentiveSubheaderAlpha

Android UI Cookbook
The UI Cookbooks will share some custom designs and examples and how to translate them into

http://help.alchemer.com/help/android-interface-customization
https://material.io/develop/android/docs/getting-started
https://developer.android.com/jetpack/androidx/migrate
https://material.io/develop/android/docs/getting-started#bridge-themes
https://material.io/
https://material.io/components?platform=android
https://material.io/design

Alchemer Mobile interactions using styles.

The code for all 3 cookbook designs can also be found within the example app styles file.

UI Cookbook Overview
UI Cookbook 1
UI Cookbook 2
UI Cookbook 3

Deprecated Styles
Since our UI was updated, not all styles were able to migrate over or they did not translate well
into the new architecture with new customization options.

Most styles in 5.8.4 and prior have been deprecated and replaced with new styles in 6.0.0.

Some styles have been moved over, such as many text size, text color, and typeface styles,
but the vast majority of styles have been changed.

The new styles have much better flexibility, many more options, better organization, and
better naming patterns.

If you are starting fresh, the possibilities are huge. Check out the UI Cookbook for examples.

Refer to the Interface Customization article for more help.

Styles used within the ApptentiveThemeOverride style will only affect Alchemer Mobile's
Interactions. You won’t need to worry about style items like colorPrimary affecting your app’s
styles if it is placed within the ApptentiveThemeOverride style.

Good alternatives to the deprecated styles are to override the view’s style individually and
set any style items you want to it.

Alchemer Mobile Code Resources
Example app styles.xml file

Check here for samples on how to use ApptentiveThemeOverride and all the style items
available.

Alchemer Mobile default UI styles.xml file
Check here for the defaults that Alchemer Mobile is using to style the views

A good starting point for creating your custom UI
Alchemer Mobile Attributes (apptentive-attrs.xml) file

Check here for all available attributes (the other two styles files above should also have
all)

https://github.com/apptentive/apptentive-kit-android/blob/main/apptentive-example/src/main/res/values/styles.xml
http://help.alchemer.com/help/android-ui-cookbook-overview
http://help.alchemer.com/help/android-ui-cookbook-design-1
http://help.alchemer.com/help/android-ui-cookbook-design-2
http://help.alchemer.com/help/android-ui-cookbook-design-3
http://help.alchemer.com/help/android-ui-cookbook-overview
http://help.alchemer.com/help/android-interface-customization
https://github.com/apptentive/apptentive-kit-android/tree/for_public/apptentive-example/src/main/res/values/styles.xml
https://github.com/apptentive/apptentive-kit-android/blob/for_public/apptentive-core-ui/src/main/res/values/styles.xml
https://github.com/apptentive/apptentive-kit-android/blob/for_public/apptentive-core-ui/src/main/res/values/apptentive-attrs.xml

How to override an Alchemer Mobile style
1. Go to your styles.xml file (or create one)

2. Add an ApptentiveThemeOverride style

3. Include any <item> overrides within that style

<style name="ApptentiveThemeOverride">
 // Override items go here
</style>

Style Information
Style / Theme Hierarchy
1. ApptentiveThemeOverride (set only by the developer in their styles.xml file) takes priority over

all other stylings

2. Second priority, we disable the style item android:background
a. This is a problem style for many of our Material Design widgets

b. We use android:colorBackground and colorSurface for background colors

c. If you do need to use this, you can re-enable with ApptentiveThemeOverride

3. Third priority, we apply the host app’s theme if shouldInheritAppTheme is set to true

4. Last priority, we apply Alchemer's theme
a. If shouldInheritAppTheme is false and you don’t have anything set in

ApptentiveThemeOverride , you will be able to see Alchemer Mobile's default theme

See ThemeHelper.kt for more info.

Important styles we inherit

We are following Material Theme guidelines for color styling

These do not need to be set within ApptentiveThemeOverride , we will inherit them
automatically

Dialog colors (Love Dialog, Prompts, Rating Dialog)
Background uses colorSurface
Non-button text uses colorOnSurface
Button text uses colorSecondary

Survey colors
Toolbar (top and bottom) background uses colorPrimary
Toolbar (top and bottom) text uses colorOnPrimary

https://github.com/apptentive/apptentive-kit-android/blob/for_public/apptentive-core-ui/src/main/java/apptentive/com/android/ui/ThemeHelper.kt
https://material.io/blog/android-material-theme-color

Activity main background uses android:colorBackground
Question Text uses colorOnBackground
Question Widgets use a combination of colorOnBackground and colorSecondary
Question Error Text uses colorError
Submit button uses colorPrimary
Submit button text uses colorOnPrimary

Logging
To set the severity of log messages shown in the logs, set the Alchemer Mobile LogLevel . The
default is set to LogLevel.Info .

Kotlin example:

val configuration = ApptentiveConfiguration(...)
configuration.logLevel = LogLevel.DEBUG
Apptentive.register(this, configuration)

Java example:

ApptentiveConfiguration configuration = new ApptentiveConfiguration(...)
configuration.setLogLevel(LogLevel.Debug);
Apptentive.register(this, configuration);

Example App
example

A simple app to help customers integrate with the Alchemer Mobile Android SDK

Instructions

1. Download and open the example app in Android Studio

2. Click the TODO tab at the bottom left of Android Studio to follow step-by-step instructions on
where and how to create a very basic Alchemer Mobile integrated Android app.

Related Articles

https://github.com/apptentive/apptentive-android-sdk/tree/for_public/apptentive-example

