
Legacy - iOS Quick Start Guide
This documentation will help you quickly start using Alchemer Mobile in your iOS app. For
complete documentation, as well as system requirements, see the iOS Integration guide.

1. Add Alchemer Mobile
There are several options for adding the Alchemer Mobile (formerly Apptentive) SDK to your app.
The easiest method is to use CocoaPods. If you would like to use another integration method,
please see our iOS Integration guide.

CocoaPods
You will need a recent version of CocoaPods, a text editor, and basic familiarity with the Terminal
app. If you aren’t already using CocoaPods for your app, start by opening up the Terminal app and
navigating to the directory that contains your app’s .xcodeproj file. Then run pod init to create a
PodfilePodfile for your app.

Open your app’s Podfile with your favorite text editor, and add an entry for Alchemer Mobile:

Uncomment this line to define a global platform for your project
platform :ios, '9.0'

target 'MyApp' do
 # Comment this line if you're not using Swift and don't want to use dynamic frameworks
 use_frameworks!

 # Pods for MyApp
 pod 'apptentive-ios'
end

Then, in the same directory as your Podfile, run pod install in the Terminal app. Finish by opening
up the .xcworkspace file created by CocoaPods.

2. Initialize Alchemer Mobile
When your app starts, it will need to initialize the Alchemer Mobile SDK.

First, you’ll need to import the Alchemer Mobile SDK, and then create a configuration object with
your Alchemer Mobile (Apptentive) App Key and Alchemer Mobile (Apptentive) App Signature.
Register Alchemer Mobile with that configuration object. Finally, set your app’s iTunes Store ID.
We recommend doing this in your application delegate’s
application(_:didFinishLaunchingWithOptions:) method:

http://help.alchemer.com/help/legacy-ios-integration-reference
http://help.alchemer.com/help/legacy-ios-integration-reference
https://guides.cocoapods.org/using/getting-started.html#installation

import UIKit
import Apptentive

class AppDelegate: UIResponder, UIApplicationDelegate {
var window: UIWindow?

 func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationL
aunchOptionsKey: Any]?) -> Bool {
 if let configuration = ApptentiveConfiguration(apptentiveKey: "<#Your Apptentive App Key#>
", apptentiveSignature: "<#Your Apptentive App Signature#>") {
 configuration.appID = "<#Your iTunes App ID#>"
 Apptentive.register(with: configuration)
 }

 // Other app initialization...

 return true
 }
}

Make sure you use the Alchemer Mobile (formerly Apptentive) App Key and Alchemer
Mobile (formerly Apptentive) App Signature for the iOS app you created in the Alchemer
Mobile console. Sharing these credentials in two apps, or using ones from the wrong
platform is not supported, and will lead to incorrect behavior.

3. Add Events
Events record user interaction. You can use them to determine if and when an Interaction will be
shown to your customer. At a minimum, you should include 20-50 Events in your app to start
taking advantage of Alchemer Mobile, but for now, let’s just create one. To trigger an Event, call
the engage() method. This will record the Event, and then check to see if any Interactions targeted
to that Event are allowed to be displayed, based on the logic you set up in the Alchemer Mobile
Dashboard.

In this example, trigger an Event when your Main Activity resumes.

import UIKit
import Apptentive

class MainViewController: UIViewController {

 // ...

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated: animated)

 Apptentive.shared.engage(event: "main_view_appeared", from: self)
 }
}

4. Add Customer ID

You can send Custom Data associated with a person’s profile that is using the app, or the device. In
particular, this is useful for sending a Customer ID and other information that helps you
understand and support your users better. Custom Data can also be used for configuring when
Interactions will run. You can add custom data of type String , Number , and Boolean .

Below is an example of a Customer ID value being passed in, along with whether that customer is
on a premium account of the app or not.

Apptentive.shared.addCustomPersonData("1234321", withKey: "CustomerID")
Apptentive.shared.addCustomPersonData(true, withKey: "is_premium")

After setting your Customer ID and other custom data, you can choose which field is your
Customer ID in the Alchemer Mobile Platform.

5. Show a Survey
Now that you’ve created an Event, you can create a Survey and display it when the Event is
triggered.

11.. Go to the Surveys page.

22.. Click “New Survey” to create a new survey.

33.. Give the Survey a name, title, introduction, add a question, choose whether to end with a ThankThank
YouYou message, and click Save & ContinueSave & Continue.

44.. Choose Publish survey as an independent InteractionPublish survey as an independent Interaction .

55.. Under the WhereWhere section, chose the Event main_view_appeared (or whatever Event name you
used). If your app hasn’t connected to the server after triggering that Event, you will need to
add it manually at this point, by clicking Create new EventCreate new Event on the Events page.

https://be.apptentive.com/apps/current/surveys
https://be.apptentive.com/apps/current/events

66.. Near the bottom, check Allow multiple responses from the same personAllow multiple responses from the same person so you can display this
survey more than once.

77.. Click Save & Continue.Save & Continue.

88.. Click Launch Survey.Launch Survey.

99.. Finally, uninstall then reinstalluninstall then reinstall the app to ensure you have downloaded that newly launched
Survey from our servers.

Now, you will see this survey when you trigger the main_view_appeared Event.

6. Add Message Center
Find a place in your app for a button that will launch Message Center. This will allow customers to
contact you with feedback, or questions if they are having trouble using your app, as well as
allow them to see your responses.

If Message Center is available, show a UIButton or UITableViewCell that will launch it when
tapped. This example assumes you have an UIViewController subclass called SettingsViewController
that has a UIButton you would like to open Message Center with.

import UIKit
import Apptentive

class SettingsViewController: UIViewController {

 // ...

 @IBAction func openMessageCenter(sender: UIButton) {
 Apptentive.shared.presentMessageCenter(from: self)
 }
}

Related Articles

