
Legacy - iOS SDK Interface
Customization
Our iOS SDK is 100% open source, and as such, you can modify the UI and underlying code at any
time. However, the Alchemer Mobile iOS SDK is built in such a way that simple UI style changes
are very easy to make without having to modify our code.

Customizing the User Interface
There are four main ways of customizing the Alchemer Mobile iOS UI, from least to most complex:

11.. Using tintColor and UIAppearance

22.. Using the Alchemer Mobile style sheet object

33.. Using a custom style object

44.. Forking the Alchemer Mobile iOS SDK

Using tintColor and UIAppearance

tintColor

By default, the Alchemer Mobile UI uses the tint color of your app’s main window. To customize
the appearance of the tint color within the Alchemer Mobile UI only, you can set the tint color on
UIView ‘s UIAppearance proxy when contained in instances of ApptentiveNavigationController .

For iOS versions prior to 9.0, use the -appearanceWhenContainedIn: method in Objective-C:

[UIView appearanceWhenContainedIn:[ApptentiveNavigationController class], nil].tintColor = <#custom tint
color#>;

For projects targeting iOS 9.0 and later, use the appearanceWhenContainedInInstancesOfClasses(_:)
method (Swift projects targeting iOS versions prior to 9.0 will have to use the aforementioned
Objective-C snippet):

UIView.appearanceWhenContainedInInstancesOfClasses([ApptentiveNavigationController.self]).tintColor = <
#tint color#>

Note that the navigation bars used in the Alchemer Mobile UI will default to a white background
color (technically a white barTintColor) if no further customizations are made. This can cause white
status bar text and icons, as well as white navigation item titles and bar button items to be
invisible. In this case you should make sure to set a contrasting bar tint or background color for the
navigation bar as described above.

Global Appearance
You can use iOS’s built-in UIAppearance capabilities to customize a number of global color and
font attributes. By default, the Alchemer Mobile UI will use these settings if they are set globally
or when contained in instances of ApptentiveNavigationController (Note that if no appearance
overrides are set, the navigation bar in the Alchemer Mobile UI will default to a white bar tint
color).

For instance, you can customize your app’s navigation bar as follows, and the Alchemer Mobile UI
will use these same values:

UINavigationBar.appearance().barTintColor = UIColor.redColor()
UINavigationBar.appearance().titleTextAttributes = [
 NSForegroundColorAttributeName: UIColor.whiteColor(),
 NSFontAttributeName: UIFont(name: "AmericanTypewriter-Bold", size: 17.0)!
]
UIBarButtonItem.appearance().tintColor = UIColor.whiteColor()
UIApplication.sharedApplication().statusBarStyle = .LightContent // Also set UIViewControllerBasedStatusBarA
ppearance to NO in Info.plist

This will set the navigation bar color to red, with a white title and buttons, and a typewriter-style
font:

If your app requires view controller-based status bar styles, you can extend
ApptentiveNavigationController to specify .lightContent as its preferred status bar style:

extension ApptentiveNavigationController {
 open override var preferredStatusBarStyle: UIStatusBarStyle {
 get {
 return .lightContent
 }
 }
}

Using a Style Sheet Object
For non-global styles, using UIAppearance quickly becomes cumbersome or impossible (for
instance, consider a standard UITableViewCell with two labels; there is no way to individually
target those labels using UIAppearance). To supplement UIAppearance , we have added a style
sheet object to the 3.0 release of the Alchemer Mobile iOS SDK.

The style sheet object is a read-write property of the Apptentive singleton that conforms to the
ApptentiveStyle protocol. You can either use the ApptentiveStyleSheet object created when the

singleton is initialized, or set your own object that conforms to the ApptentiveStyle protocol after
initialization.

Using ApptentiveStyleSheet
The style sheet object provides a series of colors and fonts for use by various parts of the
Alchemer Mobile UI. Many of the fonts are described by the UIFontTextStyle string constants, such
as UIFontTextStyleBody . In addition, a number of text styles and colors have custom keys that you
can find in the ApptentiveStyleSheet.h file. All font sizes respect the Dynamic Type settings for the
device.

Below is an example of how you might create a “dark mode” theme, using a font other than the
built-in system font:

UINavigationBar.appearance().barTintColor = UIColor.blackColor()
UINavigationBar.appearance().titleTextAttributes = [
 NSForegroundColorAttributeName: UIColor.whiteColor(),
 NSFontAttributeName: UIFont(name: "Avenir-Heavy", size: 17.0)!
]
UIBarButtonItem.appearance().tintColor = UIColor.whiteColor()
UIApplication.sharedApplication().statusBarStyle = .LightContent // Also set UIViewControllerBasedStatusBarA
ppearance to NO in Info.plist

if let style = Apptentive.sharedConnection().styleSheet as? ApptentiveStyleSheet {
 style.fontFamily = "Avenir"
 style.regularFaceAttribute = "Book"
 style.boldFaceAttribute = "Heavy"

 style.backgroundColor = UIColor.blackColor()
 style.primaryColor = UIColor.whiteColor()
 style.secondaryColor = UIColor(white: 0.8, alpha: 1.0)
 style.separatorColor = UIColor.grayColor()
 style.failureColor = UIColor(red: 1, green: 0.5, blue: 0.5, alpha: 1.0);
 style.collectionBackgroundColor = UIColor.darkGrayColor()
}

Fonts
To use a non-system font, set the ApptentiveStyleSheet ‘s ‘ fontFamily property to the name of the
font you would like to use. You can use the iOS Fonts website to find the font family name for the
fonts included with iOS (you’ll want to use the name in the heading above the list of typefaces in
each font family).

Because the naming of various font weights is not standardized, you may have to customize the
modifiers used for identifying each weight of your chosen font. You do this by setting the
corresponding face attribute property. For example, the built-in Avenir font’s regular weight is
called “Avenir-Book”, so the regular face attribute is set to “Book”. Some fonts omit the suffix
entirely for their regular weight. In that case, set the face attribute to nil . Available attribute
properties are lightFaceAttribute , regularFaceAttribute , mediumFaceAttribute , and boldFaceAttribute ,
which default to “Light”, “Regular”, “Medium” and “Bold”, respectively.

Some fonts may not include all four weights used by the style sheet object. In that case you may
need to set one or more of them to use another weight.

Finally, you can globally adjust the font size used by the Alchemer Mobile UI by modifying the
sizeAdjustment property, which acts as a global multiplier to the font sizes that would otherwise

be used.

Colors
There are six colors that can be modified to change the appearance of the Alchemer Mobile UI:

primaryColor (defaults to UILabel ‘s textColor appearance property)
secondaryColor (defaults to #8E8E93)

http://iosfonts.com/

failureColor (defaults to #DA3547)
backgroundColor (defaults to UITableViewCell ‘s backgroundColor appearance property)
separatorColor (defaults to UITableView ‘s separatorColor appearance property)
collectionBackgroundColor (defaults to UITableView ‘s backgroundColor appearance property)

The primary, secondary, and failure colors need to contrast well with the background color. The
separator and collection background colors are mostly a matter of aesthetics. This survey shows
an example of how theses colors are used:

Initializing from a Property List
You can also create an instance of the ApptentiveStyleSheet class using values from a property
list. Use the initWithContentsOfURL: initializer and set Apptentive.shared.styleSheet property to the
result. The Alchemer Mobile Cordova integration for iOS does this for you.

The property list consists of a top-level dictionary with keys that are as follows:

FontFamily
LightFaceAttribute
RegularFaceAttribute
MediumFaceAttribute
BoldFaceAttribute
PrimaryColor
SecondaryColor
FailureColor
BackgroundColor
SeparatorColor
CollectionBackgroundColor
PlaceholderColor
SizeAdjustment

ColorOverrides
FontOverrides

All but the last three have string values. Color values should be specified as web color in the
format of a pound sign followed by three two-digit hexadecimal numbers specifying red, green
and blue (e.g. #FFFFFF for white).

The value for the SizeAdjustment key is a number specifying a global change to the size of the text
in the Alchemer Mobile UI, where 1.0 is normal size. This is useful if a particular font family at the
default size is too small or too large everywhere.

The ColorOverrides and FontOverrides override specific styles and should have dictionary values.
The following keys work for both font and color sub-dictionaries:

com.apptentive.body
com.apptentive.header.title
com.apptentive.header.message
com.apptentive.message.date
com.apptentive.message.sender
com.apptentive.message.status
com.apptentive.messageCenter.status
com.apptentive.survey.question.instructions
com.apptentive.doneButton
com.apptentive.button
com.apptentive.submitButton
com.apptentive.textInput

The keys below are only used when specifying colors:

com.apptentive.color.header.background
com.apptentive.color.footer.background
com.apptentive.color.failure
com.apptentive.color.separator
com.apptentive.color.cellBackground
com.apptentive.color.collectionBackground
com.apptentive.color.textInputBackground
com.apptentive.color.textInputPlaceholder
com.apptentive.color.messageBackground
com.apptentive.color.replyBackground
com.apptentive.color.contextBackground

For color overrides, the values again are six-digit hex web colors with a preceding pound sign.

For font overrides, the values are dictionaries. These sub-sub-dictionaries should have keys of
font and size . The value for the font e>font key is a string describing the specific typeface (both

font and weight—see http://iosfonts.com for a list of those included by the operating system). The
value for the size key is a number describing the desired size in points.

http://iosfonts.com/

Using Your Own Style Sheet Object
To further customize the fonts and colors used by the Alchemer Mobile UI, you can subclass
ApptentiveStyleSheet or create your own implementation from scratch that conforms to the
ApptentiveStyle protocol. Your implementation will have to return appropriate fonts and colors

based on the keys listed in the ApptentiveStyleSheet.h file.

To use your custom style object, simply set the styleSheet property on the Apptentive singleton
to an instance of your style sheet class before displaying Alchemer Mobile UI.

class MyStyleSheet: ApptentiveStyle {
 func fontForStyle(textStyle: String) {
 // ...
 }

 func colorForStyle(style: String) {
 // ...
 }
}

// In your App Delegate's application(_:didFinishLaunchingWithOptions:)
Apptentive.sharedConnection().styleSheet = MyStyleSheet()

If you would like the Alchemer Mobile UI to use Dynamic Type, your style sheet class will have to
adjust font sizes appropriately. For reference the elements that can be styled, with their
corresponding style/textStyle keys are illustrated below:

Message Center Style 1

Survey Style

Message Center Style 2

Forking the Alchemer Mobile iOS SDK
In general, we recommend against forking the Alchemer Mobile iOS SDK, since it requires that
changes to the main Alchemer Mobile repository be merged into the fork when the former is
updated.

We plan to migrate the Alchemer Mobile iOS SDK’s architecture to a Model-View-ViewModel
system, which will allow forks of the SDK to customize the look and feel of the SDK without re-
implementing the logic. The first component that adheres to this architecture is the Surveys
component.

As stated above, we encourage you to explore using the built-in capabilities for customization, and
contacting us if you have questions or feature requests, before creating a fork and modifying it.

Related Articles

http://help.alchemer.com/help/alchemer-support-hours

